8,683 research outputs found

    Unlocking Plant-level Resource Efficiency Options: A Unified Exergy Measure

    Get PDF
    AbstractIn this research we propose a physical measure of resource efficiency, based on exergy, which combines energy and material flows in a single dimensionless metric, bounded by 0 and 1. The inclusion of materials in the efficiency metric makes it possible to compare a wide range of industrial devices and processes, and even different sectors, using a consistent framework. Resource efficiencies for steel-making processes were computed as an example and were found to range from 10.0% in sinter plants to72.1% in coke ovens. A unified resource efficiency measure helps identify the drivers of resource consumption and reveal opportunities to reduce carbon emissions

    Ambiguity helps: classification with disagreements in crowdsourced annotations

    Get PDF
    Imagine we show an image to a person and ask her/him to decide whether the scene in the image is warm or not warm, and whether it is easy or not to spot a squirrel in the image. For exactly the same image, the answers to those questions are likely to differ from person to person. This is because the task is inherently ambiguous. Such an ambiguous, therefore challenging, task is pushing the boundary of computer vision in showing what can and can not be learned from visual data. Crowdsourcing has been invaluable for collecting annotations. This is particularly so for a task that goes beyond a clear-cut dichotomy as multiple human judgments per image are needed to reach a consensus. This paper makes conceptual and technical contributions. On the conceptual side, we define disagreements among annotators as privileged information about the data instance. On the technical side, we propose a framework to incorporate annotation disagreements into the classifiers. The proposed framework is simple, relatively fast, and outperforms classifiers that do not take into account the disagreements, especially if tested on high confidence annotations

    A comparison of location of acute symptomatic vs. 'silent' small vessel lesions

    Get PDF
    Background: Acute lacunar ischaemic stroke, white matter hyperintensities, and lacunes are all features of cerebral small vessel disease. It is unclear why some small vessel disease lesions present with acute stroke symptoms, whereas others typically do not. Aim: To test if lesion location could be one reason why some small vessel disease lesions present with acute stroke, whereas others accumulate covertly. Methods: We identified prospectively patients who presented with acute lacunar stroke symptoms with a recent small subcortical infarct confirmed on magnetic resonance diffusion imaging. We compared the distribution of the acute infarcts with that of white matter hyperintensity and lacunes using computational image mapping methods. Results: In 188 patients, mean age 67 ± standard deviation 12 years, the lesions that presented with acute lacunar ischaemic stroke were located in or near the main motor and sensory tracts in (descending order): posterior limb of the internal capsule (probability density 0·2/mm3), centrum semiovale (probability density = 0·15/mm3), medial lentiform nucleus/lateral thalamus (probability density = 0·09/mm3), and pons (probability density = 0·02/mm3). Most lacunes were in the lentiform nucleus (probability density = 0·01–0·04/mm3) or external capsule (probability density = 0·05/mm3). Most white matter hyperintensities were in centrum semiovale (except for the area affected by the acute symptomatic infarcts), external capsules, basal ganglia, and brainstem, with little overlap with the acute symptomatic infarcts (analysis of variance, P < 0·01). Conclusions: Lesions that present with acute lacunar ischaemic stroke symptoms may be more likely noticed by the patient through affecting the main motor and sensory tracts, whereas white matter hyperintensity and asymptomatic lacunes mainly affect other areas. Brain location could at least partly explain the symptomatic vs. covert development of small vessel disease

    More three-point correlators of giant magnons with finite size

    Full text link
    In the framework of the semiclassical approach, we compute the normalized structure constants in three-point correlation functions, when two of the vertex operators correspond to heavy string states, while the third vertex corresponds to a light state. This is done for the case when the heavy string states are finite-size giant magnons with one or two angular momenta, and for two different choices of the light state, corresponding to dilaton operator and primary scalar operator. The relevant operators in the dual gauge theory are Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5 and N = 4 super Yang-Mills. Then we extend the obtained results to the gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory, arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure

    Correlation functions of three heavy operators - the AdS contribution

    Get PDF
    We consider operators in N=4 SYM theory which are dual, at strong coupling, to classical strings rotating in S^5. Three point correlation functions of such operators factorize into a universal contribution coming from the AdS part of the string sigma model and a state-dependent S^5 contribution. Consequently a similar factorization arises for the OPE coefficients. In this paper we evaluate the AdS universal factor of the OPE coefficients which is explicitly expressed just in terms of the anomalous dimensions of the three operators.Comment: 49 pages, 3 figures; v.2 references corrected; v3: corrected discussion in section 5, results unchange

    Wave functions and correlation functions for GKP strings from integrability

    Full text link
    We develop a general method of computing the contribution of the vertex operators to the semi-classical correlation functions of heavy string states, based on the state-operator correspondence and the integrable structure of the system. Our method requires only the knowledge of the local behavior of the saddle point configuration around each vertex insertion point and can be applied to cases where the precise forms of the vertex operators are not known. As an important application, we compute the contributions of the vertex operators to the three-point functions of the large spin limit of the Gubser-Klebanov-Polyakov (GKP) strings in AdS3AdS_3 spacetime, left unevaluated in our previous work [arXiv:1110.3949] which initiated such a study. Combining with the finite part of the action already computed previously and with the newly evaluated divergent part of the action, we obtain finite three-point functions with the expected dependence of the target space boundary coordinates on the dilatation charge and the spin.Comment: 80 pages, 7 figures, v2: typos and minor errors corrected, a reference added, v3: typos and a reference corrected, published versio
    • …
    corecore